

Introduction

- ★ For characterisation of *real* particles *particle shape* in addition to the *particle size* gains more and more importance
- ★ Static image analysis (non-moving particles, e.g. on a microscope slide)
 - \checkmark Depth ε of the sharpness is defined
 - ✓ High resolution for small particles
 - Well established and standardised in ISO 13322-1 (Quimet, Kodak)
 - Small amount of data
 - ➤ Particles are *orientated* by the base
 - Problem with overlapping particlesHigh effort for software correction
 - Tiny sample size → sampling problem
 - ♥ Very poor statistics

- ★ A flow of moving particles is captured
 - Enlarged sample size
 - Arbitrary orientation
 - ✓ Reduction of overlapping particles
- ★ Several companies provide systems
 - ☆ Reflection or transmission technology
 - ★ Wet dispersion or free fall
 - ★ Matrix or line scan cameras
- ★ Common to all systems is
 - **X** Dry products: Free fall → for well flowing bulk materials only, no dispersion
 - **X** Wet dispersion → smallest sample sizes and slow particles
 - **X** Low frame rates → small number of particles → bad statistics
 - ✓ All system types will be integrated in the coming standard ISO 13322-2

<u>Optimum</u>

Dynamic image analysis with powerful dispersion and good

- ★ Effective dispersion must be the prerequisite of image analysis
- **★** This adds *energy* to the particles → creates fast particles
 - → which have to be *imaged clearly* within *exposure time*

Dry disperser RODOS™

- ★ Combines particle-to-particle, particle-to-wall and centrifugal forces caused by velocity gradients for effective dispersion down to 0.1 µm
- ★ Particle velocity in aerosol beam: Up to 100 m/s
- \star Flash lamps with τ = 100 μ s: Motion blur up to 10 mm (!)
- \star Best flash lamps with τ = 1 μ s: Motion blur of up to 100 μ m
 - Required exposure time: $\tau < 10 \text{ ns}$ for motion blur of $< 1 \mu m$

particle movement within au

SYMPA T-C

★ In order to obtain a representative sample and a good statistical reliability a large number of particles should be acquired in short time

Example 1

1 % precision requires 10.000 particles within one size class Within 10 particles/image \rightarrow 1000 images or 40 s measuring time at 25 images/s per class. \rightarrow for 30 equally populated classes: The measuring time is about 1200 s = 20 minutes

♥ Not acceptable

Example 2

As above, but 500 images/s, and because of good dispersion 20 particles/image \rightarrow for 30 equally populated classes: The measuring time is only 30 s!

♥ OK

⇔ High frame rate required (>> 25 images/s)

Extreme data volumes (500 Mbyte/s at 500 images/s, 1 Mpixel, 8 bit)

New Approach (3): Special Optical Set-up

- ★ Even a *perfect parallel beam* will **not** produce a clear shadow of a small particle
 - The intensity pattern depends on the distance between sensor and particle

- ★ Without imaging optics
 - X Sensor must be *very close* to the particles
 - **X** Image quality *depends on particle size* → high calculation effort
 - ✗ Sensor must be scaled to the particle size

Standard Imaging Lens

- ★ At image plane 2' the image of arrow 1 is blurred
 ♦ Only objects located at a single object plane are in focus on a flat sensor
- \star The size of blurred spot depends on distance of the object to the object plane and the angle of rays θ which passes the lens
- Magnification depends on object position (perspective image)

Special Imaging Lens

- \star The aperture stop controls the angle of rays θ (aperture angle)
 - ✓ Image size does not depend on object position

 - Even *transparent particles* show *high contrast*, as deflected light is not imaged
 - ♥ Calculation effort is remarkably reduced

Illumination

★ Front illumination

- ✓ Very realistic images incl. surface structure
- Reflection depends on particle material and shape
- Difficult and error-prone image analysis

★ Illumination box

- Light can still be reflected by particle borders
- Small aperture stop is required to reduce reflection
 - ♥ Very much light is required
 - Limited imaging of small particles

Illumination in Transmission

- ✓ The smallest aperture angles can be used → highest contrast
- ✓ The aperture stop blocks only stray light and large angle diffracted light from the particles.
 - ✓ The aperture stop has no influence on the brightness of the background

 → only small light intensities are required
 - ✓ The depths of field is limited by diffraction only → wide working distance.

- ★ Pulsed light source
 - ✓ Pulse duration: < 1 ns</p>
 - ✓ Output power: ≈ 0,15 nJ/pulse
 - ✓ Light colour: visible (≈ 532 nm)
 - ✓ Repetition rate: 0 to 500 Hz, adjustable
- ★ Beam expansion unit
 - ✓ 35 mm Ø, 16 mm Ø, 7 mm Ø

- ★ Imaging objectives (up to 5 on a carousel)
 - **2**:1, 1:1, 1:3, (1:10) ...
- ★ Camera
 - CMOS, 1024 x 1204 pixel,
 - Square pixel, 10 μm²
 - ✓ Up to 500 fps

Copyright[©] 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany QICPIC 2006 / 12E

Copyright[©] 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany QICPIC 2006 / 13E

Copyright[©] 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany QICPIC 2006 / 14E

Copyright[©] 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany QICPIC 2006 / 15E

- ★ Every measurement is characterised with:
 - ☆ Unique primary key
 - ☆ Product
 - ☆ Measuring range
 - ☆ Trigger condition
 - ☆ Disperser
 - ☆ User specific parameters

- On-line monitoring during measurements (10 fps)
 Video player function in database mode
 - ☆ Scaled and non-scaled
- Selection of a particle directly:
 Displays size and shape
 parameters
- Export via clipboard or video streaming file (AVI)

Calculation Modes

- Circle of equal projection area
- Feret Diameter
 - * maximal
 - * minimal
 - * averaged
 - * 90° to maximum
 - * 90° to minimum
- Minimal area of enclosing rectangle
 - * length
 - * width
- Chord length
 - * vertical
 - * horizontal
 - * maximal
 - * minimal
 - * 90° to maximum
 - * 90° to minimum
 - * averaged

Particle Gallery

"Looking for a needle in a haystack"

- Defined filters with different size- and form conditions
- Unlimited number of particles within the filter conditions are displayed in a gallery window
- ✓ Ability to trace back to particle movie

Measuring ball bearing beads

✓ Successful search for *fibres* of the tissue used for cleaning of GRADIS

User defined Results

- ★ Considering the *really important fractions* for the evaluation
- ★ Define new filter conditions or transfer the filter conditions of the particle gallery
- ★ Re-calculate size and shape information only for particles matching the filter conditions

Examples

- ★ Calculate individual PSDs for the components of a mixture of components that differ in shape
- ★ Calculate the size distribution for perfect spherical particles only
- ★ Eliminate or search for artefacts

Technical Data

Sensor:

1 µm – 20.000 µm

Principle: Image Analysis in transmission

QICPIC

Dispersion: Adaptable modules for aero-dispersion, sprays, suspensions

Light source: Pulsed light source 0 to 500 Hz, < 1 ns, 532 nm (green)

Beam expansion adaptable to measuring range

Measuring ranges: Optical modules 3:1 to 1:10, on revolving disk

Measurement: High speed CMOS camera 1024 x 1024 square pixels, 10 x 10 µm²

256 grey levels (8 bit)

Frame rate up to 500 images/s

Data transmission: Twisted, two-wire copper cable 1.25 Gbit/s, 5 meters max.

Evaluation: Particle size equivalent sphere, enclosing rectangle,

cord length, Feret & Martin diameter

Particle shape sphericity, as function of particle size

Class limits definable, internal 20.000 classes

Visualisation: Presentation of characteristic particle various selection options:

images movie, gallery

Software & QA: WINDOX 5 compliant with 21 CFR Rule 11,

including electronic signatures

QICPIC Conclusions

- QICPIC is an innovative measuring system for particle size and shape determination with image analysis in the range of 1 μm to 20 mm
- Extraordinary short exposure time of < 1 ns enables clear images of fastest particles and for the first time the use of approved, cutting edge dispersing devices, for dry, wet, spray or inhalation applications
- ✓ High acquisition rate of un-matched 500 images/second guarantees sound particle counts and superior statistical relevance of results
- ✓ Permanent storage of original information in 20.000 size classes in data base
- ✓ Effective data compression w/o loss of data allows retrospective modifications of evaluation and visualisation
- Various different size and shape factors are implemented
- "Particle Gallery" or "Evaluation of User specific Fractions" offer powerful tools for investigation of specialities
- ✓ WINDOX 5 software with *client/server structure* and to speed multi-user data base accomplishes *stunning data volume* and manages simultaneous operation with *Laser Diffraction*, *Ultrasonic Extinction* and *Photon Cross Correlation sensors*

