

- ★ Particles in the nanometre range offer numerous new properties:
 - Scratchproof surfaces and coatings
 - Conductive glass
 - Non corrosive steel
 - Optical storage capacity of plastics
 - Bullet proof synthetic fibres
- ★ Can be designed e.g. in composite products, which contain large amounts of transparent fumed silica in the nanometre range as filler in a plastic matrix

Example Aerosil Typ "0.2 – 2 µm" about. 50 Weight. %

Size Scales

★ The new properties of these fillers are related to their particle size

Material Characteristics

- ★ Material characteristics depend on
 - ✓ The particle size distributions
 - ✓ The stability of such distributions
- ★ Nano particles having extremely large surfaces tend to

Photon Correlation Spectroscopy (PCS) Interaction of laser light and particles

Interaction of laser light and particles in the nanometre range

 $t = \Delta t$

 $t = 2\Delta t$

★ Brownian molecular motion

intensity

- ✓ The phenomenon was correctly assumed by W. Ramsay in 1876 and proven by A. Einstein and M. von Smoluchowskiin in 1905/06
- "Stokes Einstein" relation applies:

$$D(x) = k_B T / 3\pi \mu x$$

applying the auto-correlation function $G(\tau)$

D diffusion constant

k_B Boltzmann-constant

T absolute temperature

η dynamic viscosity of surrounding medium

x particle diameter

$$G(\tau) = \langle I^{s}(\theta,0) | I^{s}(\theta,\tau) \rangle = \langle I \rangle^{2} (1 + \exp(-2 \frac{D(x)}{q^{2}} \frac{q^{2} \tau}{\tau}))$$

$$\langle I \rangle^{2} (1 + \exp(-2 \frac{Q^{2} k_{B} T \tau}{3\pi \eta x}))$$

$$\Leftrightarrow$$
 decay constant \propto diffusion $D(x) = \frac{k_B T}{3\pi\eta x}$

- \triangle Calculation of auto correlation function $G(\tau)$
- \Rightarrow Evaluation of particle size from slope $ln(G(\tau)-1)$

intensity *I(t, \O)*

Copyright $^{\hbox{\scriptsize (O)}}$ 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany NANOPHOX 2006 / 8E

Limitations of PCS

- ★ Valid only for non-interacting, spherical particles
- ★ Singularly scattered laser light
- ★ Multiple scattering in turbid suspensions of high concentrations distorts the result
 - Depends on concentration
 - And cuvette position
- ★ To avoid multiple scattering PCS has to be operated at extremely low concentrations:
 - Low scattering intensities
 - ♥ Poor signal-/noise ratio
 - ♦ Long analysis times
 - ➤ Dilution not only delicate → often even non-permissible
 - Contaminations → dust bastardises the result
 - Stability of sample ?

Photon Cross Correlation Spectroscopy (PCCS)

i noton cross correlation spectroscopy (i cos

Principle

- Two laser beams cross over in the sample container and generate two similar signal patterns (speckles)
- Identical parts can be selected by correlation of the intensities of two equivalent signal spots

Result

- ★ Key principle: 3D-cross correlation
 - Selection of singularly scattered light

- 2 measured variables:
- ✓ Mutation of sample → change of amplitude
- Potential for stability analysis
- 2. Slope ∞1/particle size *x*
- ✓ PCCS provides exact information for turbid samples

Elimination of multiple scattering portion:

 \star Latex in H₂O, 107 \pm 10 nm (TEM)

Transparent: Transmission 99.7 %

Turbid: Transmission 0.7 %

Both: (1x1 cm²-cuvette)

Copyright@2005. IFAM Bremen. Dr.M.Kleemeier

Copyright@2000, ALV-GmbH, Langen Application Report #004

Latex 120 nm, 0.2 weight %, 3 different cuvette positions

Latex 120 nm,

4 concentrations: 2; 0.4; 0.2; 0.1 weight %

Concurrent Analysis of Stability and Particle Size

Sedimentation of a turbid quartz suspension over many hours

Evaluation

Standard evaluation (2nd Cumulant)

- ★ Presumes and requires mono modularity and yields:
 - Median diameter of the distribution
 - ✓ Indication as to the width of distribution (width ± %)
 - No information regarding the internal structure of the total distribution

mean diameter 195 nm, width 10,2 %

mean diameter:

195 nm ± 10.2 %

width:

NNLS (Non Negative Least Square):

Selection of the best fitting window determines the quality of the evaluation

- Indication of structure of the distribution possible
- For selection of the properly detected area (best fit) reliable information for the single modes

WINDOX 5 Operation Control and Evaluation Software

Copyright $^{\hbox{\scriptsize (C)}}$ 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany NANOPHOX 2006 / 18E

Technical Data NANOPHOX™

Measuring range: 1 nm – 10.000 nm

Principle: Dynamic light scattering

Scattering angle: 90 degree

Evaluation: 3-D cross correlation

Analysis volume: ca. 0.3 ml

Sample container: Cuvette 10x10 mm²

Cuvette position: Automatic or manual

Light source: HeNe-laser, 10 mW max.

Wave length: 632.8 nm

Class of laser: 3B

Class of instrument: 1

Optics: No adjustment requested

Temperature range: $15 - 40^{\circ}\text{C}$, typ. $22 - 25^{\circ}\text{C}$ recommended, via software

Temperature stability: $0.05^{\circ}\text{C} (\cong 0.1 \% \text{ precision during evaluation of particle size})$

Precision of temperature

control: $0.1^{\circ}C \cong 0.2 \%$ precision of particle size

NANOPHOX Conclusions

- ★ Photon Cross Correlation Spectroscopy (PCCS) provides:
 - Concurrent analysis of particle size from 1 nm to 10 μm and stability of sample
 - For T=const. only η (dynamic viscosity of liquid) requested (refractive index n for mass and volume proportions only)
 - Cross correlation completely eliminates the multiple scattering allotment
 - Analysis with turbid and coloured samples
 - Independence of results on concentration and cuvette position
 - No adaptation of evaluation to multiple scattering necessary
 - Analysis for high concentrations
 - Normally no dilution required
 - No special request for cleanliness (as for PCS)
 - ♦ No special glass cuvette necessary)
 - Rapid, statistically secure analysis due to high counting rate
 - ♥ Easiest handling

