

Mission & Vision Better Particles with Best Instruments 1 nm to 10.000 μm

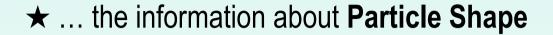
Sympatec makes a prominent contribution to the control of quality and production and the development of particulate systems of sustainable applications with innovative particle size analysis technologies

HST: M16 - Eagle Nebula

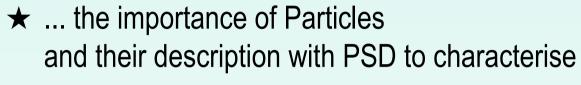
Copyright© 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany Vision of Better Particles 2006 / 2E

★ Better understanding of ...

... the behaviour of **Particles** ...


★ ... the message and meaning of a **Particle-Size-Distribution (PSD)**

**	Mean diameter	X ₅₀	1			
*	Finest particle	X _{min}	√			
*	Coarsest particle	X max	√			
*	Specific surface	S_V, S_M		√		
*	Cumulative distribution	$Q_r(x)$		√		
*	Density distribution	$q_r(X)$			1	
*	Fine & coarse tail	'1 ' ,			1	
*	Statistic coefficients	$M_{k,r}$				/
			Beg.	Adv.	Exp.	Pro.



☆ Shape factor definitions	Ψ	\			
☆ Application fields		√			
☆ Shape distributions	Q (Y)				
☆ Size dependent diagrams	Ψ (x)		✓		
			✓		
	$Q_{r}(\Psi)$			√	
☆ Out-of-focus particles	• • •			√	
☆ Separation calculations					1
		Beg.	Adv.	Ехр.	Pro.

★ ... the correlation with **Particle Stability**

properties and attributes of particulate matter:

* Ahrasion

71	ADIASION
*	Absorption
*	Agglomeration
*	Bulk density
*	Classifiability
*	Coarseness
*	Cohesiveness

* Colour

* Combustibility

* Consolidation

Conveyability

Crystallisation

Crushability

Compressibility

"Better Particles"

... more properties and attributes of particulate matter

*	Degree of Dispersion
*	Deposition
*	Diffraction
*	Dispersibility
*	Dissolubility
*	Explosion Hazard
*	Extinction
*	Filling Capacity
*	Fineness
*	Flammability
*	Floatability
*	Flowability
*	Fluidisation
*	Formation
*	Friability
*	Fume

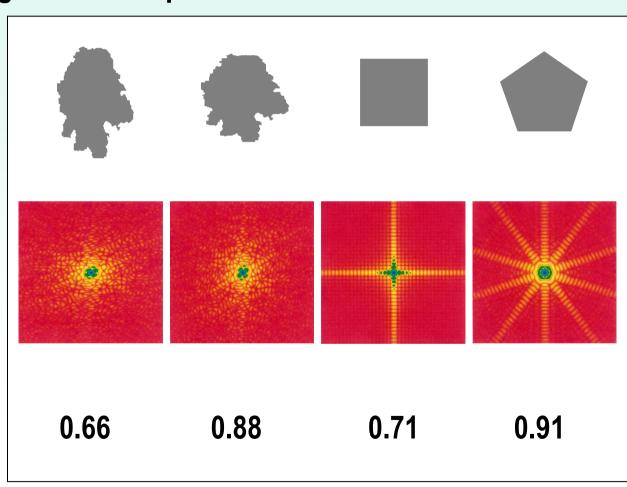
Grading
Granulation
Grindability
Handling
Homogeneity
Mesh Number
Milling Progress
Miscibility
Nozzle Jet
Oversize
Packing
Permeability
Polydispersity
Porosity
Reactivity
Reduction ratio
Refinement

matter			
*	Screenability		
*	Sedimentation		
*	Separation		
*	Settlement		
*	Shear-Strength		
*	Soil Mechanics		
*	Solubility		
*	Sortability		
*	Sphericity		
*	Spray Dryability		
*	Surface Area		
*	Trickling Capability		
*	Turbidity		
*	Undersize		
*	Wear strength		
*			

* Grade Efficiency

SYMPA T-C

Properties of single Particles presented in...


★ 2D-Projection

with reference to the...

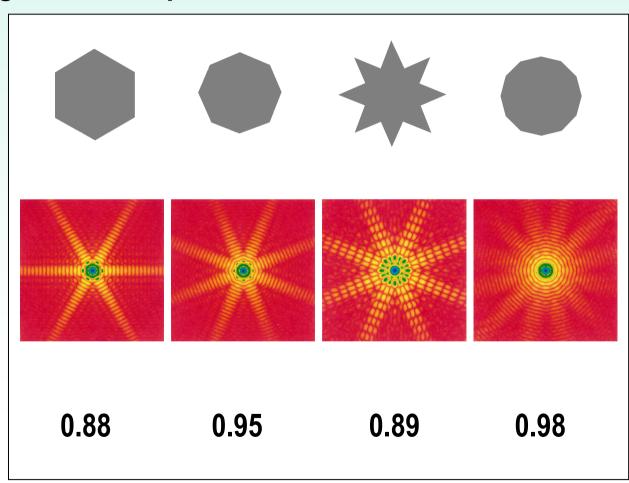
★ Attribute "Diffraction"

and / or...

★ Aspect ratio

SYMPA T-C

Properties of single Particles presented in...

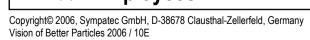

★ 2D-Projection

with reference to the...

★ Attribute "Diffraction"

and / or...

★ Aspect ratio



*	Foundation	1984	Germany, Clausthal & Remlingen
\star	Headquarter	2004	Pulverhaus, Clausthal
*	Subsidiaries		Basel (CH), Etten-Leur (NL), Paris (FR), Bury (UK), Stockholm (SE), Seoul (KR), Princeton (USA), Shanghai (CN), Teheran (IR)
\star	Technology		Powder Technology Departments
	& Know-How		TU Clausthal & University of Karlsruhe (TH) &
			Fraunhofer Institute Bremen
*	Awards	1985	RODOS dry dispersing technology
			TT-Award, IHK-Braunschweig
		1986	On-line particle size analysis
			TT-Award, Federal Ministry of Science&Arts
		1992	Opus Ultrasonic Extinction
			Arnold-Euken-Award, GVC Düsseldorf
		2005	System-Partikel-Technik
			Honorary Doctorate-Award, TU Clausthal
*	References	2006	more than 2000 installations
, ,			

* *	Mission Vision Strategy	Better Particles with Best Instruments from 1 nm to 10000 µm (Size-Range) Hidden Champion
*	Identity	Competence in Technology & Markets
	☆ Success positions	 * Laser Diffraction (LD) for dry powders from 0.1 μm unique range: 0.1 μm – 8750 μm * Development of dispersing systems * Ultrasonic Extinction (UE): 0.01 μm – 3000 μm * Image Analysis (IA): 1 μm - 20000 μm * Photon Cross Correlation Spectroscopy: 1 nm – 10 μm * off-, at on- & in-line in top down design
	☆ Innovation	adaptation of sensors to the products to be analysed
	☆ Manufacturing	 * Lean production * System integration * High-tech-Instruments
	Sales Force& Service inIndustrial World	 * Direct sales & service * Distributors * Agencies
*	Employees	about 100 (2005)

Technical Milestones (1)

SYMPA T=C

1984 RODOS	adaptation of laser diffraction for dr	y powder analysis finer than
------------	--	------------------------------

0.1 µm, with patented two-stage dispersing system

HELOS highly accurate sensor for auto-aligned

31 classes, combined with parameter-free Phillips-Twomey

solution

1985 QX programme package for universal processing of particle size

distributions (psd)

1986 ROPRON patented sample-coupler with two stage in-stream sample

splitter (dry processes)

1987 SUBMICRON pioneering application of Fraunhofer diffraction from 0.1 μm,

with 11 points measured below 1 µm

1988 REMO/PARA software modules for comparison of different psa-methods, for

example, laser diffraction with sieve analysis

1989 auto-RODOS automatic versions of dispersing systems, computer controlled,

auto-SUCELL prepared for co-operation with robots

1990 auto-GRADIS

TRIMO dynamic trigger ignition

SAFIR Sampling Finger Robot (wet processes)

1991 QT Quality-Time dependence monitor

Technical Milestones (2)

SPRAY-SIZER universal adapter for spray applications

MAGIC HELOS-sensor with auto-ranging

OPUS/C acoustic in-line psa using ultrasonic

extinction, flow-through cuvette design

1992 auto-RODOS- module integrated dry disperser with guaranteed long-term stability

1992 TOPMICRON range extension with deflection amplifier

up to 3500 µm

MIE evaluation mode for all complex refractive indices and

absorption coefficients

1993 auto-RODOS automatic dry dosing modules

DSD/DTB/DRB

GRACELL/HOTCELL specialised suspension applications for coarse and heavy

SVA particles, for heated suspensions and smallest liquid volumes

1994 INCELL in-line dry measuring cell for laser diffraction

INHALER- ADAPTER universal adapter for dry powder inhalers

DRYSUBMICRON dry detection in the sub-micron range from 0.1 μm

HRLD high resolution laser diffraction evaluation

Technical Milestones (3)

SYMPA T-C

1995 WINDOX database, graphical operator interface

Reference Material test powders for certification of sensors and dispersing

systems

SQS & Validation validation procedure in accordance with FDA/DIN-ISO/BS

HELOS/F-Series sensors with fibre optic light transmission and variable,

automatic focal length adapted beam expansion

VIBRI universal precision feeder

1996 MEGAMICRON range extension up to 8750 μm

WINDOX/OS sensor operation control under Windows™

QUIXEL automatic rapid operation suspension dispersing system

(QUICK-SUCELL)

1997 TWISTER representative in-line sampling for aerodispersions and

suspensions

MYTOS in-line particle size analysis with laser diffraction and

integrated dispersing device

OPUS/F acoustic probing in finger design

QX/Windows programme package for analytical evaluation of psa data and

process optimisation

Technical Milestones (4)

SYMPA T-C

1998 HELOS/MAGIC optimisation of sensor sensitivity by automatic adaptation of

measuring range

WINDOX/NT WINDOX software for the Windows NT™ operating system

CUVETTE modular CUVETTE system with integral ultrasonic probe and

CHASSIS/SM/US for sub-micron ranges

MEGAGRADIS GRADIS optimised for cm particles

HELOS/BF extension BF-HELOS sensors with TOPMICRON technology up to 875

µm (R5)

HELOS/KF extension KF-HELOS sensors with MEGAMICRON technology up to

8750 µm (R8)

TWIMY-Family adaptation of in-line LD (TWISTER & MYTOS) to process and

product specific requests

OPUS/F-Pack modular finger (probe) - design of different lengths and

process – adapters

WINDOX/OPUS integration of OPUS/F operation control and data evaluation

into WINDOX system

1999 TWIMY-Family adaptation of in-line LD (R3, R5) to process and product

specific requests

Technical Milestones (5)

☆ MYTOS in-line

TWISTER 100 to 500 mm Ø

☆ MYTOS on-line TWISTER 100, 150, 200 mm Ø

☆ MYTOS on-line GMP TWISTER 150 mm Ø

OPUS/F-Pack modular Finger (probe) - design of different lengths and

process – adapters

☆ process - adapters FT 10 – 25 DN

BP 25/100 - 150/150 DN

SB rack

docking positioner & cleaner

2000 HELOS laptop-support via USB interface

QS HELOS validation with IQ, OQ, PQ

WINDOX 4.0 32-bit version of WINDOX with current user interface and

extended performance

RODOS/M fully digital evolution of classical dry powder disperser RODOS

VIBRI/RF with rotary funnel allows for dosing of bulk materials, which

tend to bridging

SUCELL LIM-Design

Technical Milestones (6)

SYMPA T-C

SPRAYER adaptation of acknowledged SPRAY-SIZER to FDI

requirements, incl. trajectory and force controlled actuators

MYTOS&VIBRI/AMT modular design for Polab® AMT for analysis of cement in

automated labs or in process

OPUS (G) OPUS-fingerprobe in tempered design with improved chemical

resistance, modularity in process and efficiency of service

2001 OASIS dispersing system, combining RODOS /M and SUCELL/M for

alternative use for dry or wet applications

ASPIROS encapsulated micro dosing system for use with RODOS and

RODOS/M

SUCELL/M digital version of proven SUCELL

INHALER system for reception and evaluation of any kind of inhalers in

modular

KSigma software for evaluation of extinction functions for OPUS

NIMBUS off-line ultrasonic extinction including calibration procedure

(KSigma)

WINDOX 4.1 "FDA rule 11" compatible

TWIMY-Family R2, R6 and TWISTER 600 mm Ø

Technical Milestones (7)

2002	ASPIROS/Multi	automated supply of sample tubes from a transport magazine including bar code reader for data transmission and functional control
	WINDOX 4.2	optimised control of dispersing systems, envelope curves and quality limit lines; French language integrated
	TWISTER 50	adaption of MYTOS & TWISTER family to small pipe diameters
2003	NANOPHOX	"Photon Cross Correlation Spectroscopy" 3D cross correlation for particle size and stability determination from 1 nm to 10000 nm for turbid suspensions and emulsions in high concentrations also
2004	QICPIC	particle size and shape analysis with image processing of
		highest order from 1 µm to 10.000 µm
	WINDOX 5	new structure based on Interbase™ data base server with
		integration of HELOS, QICPIC, OPUS, NIMBUS, NANOPHOX

been allocated under one roof

construction and move into new Sympatec premises at

Clausthal-Zellerfeld, where all former operational units have

2006 PICTOS on-line particle size and shape analysis

2005 Pulverhaus

Copyright© 2006, Sympatec GmbH, D-38678 Clausthal-Zellerfeld, Germany Vision of Better Particles 2006 / 18E