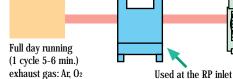
Inline Cold Trap Unit

NEW PRODUCT

Solution Example

Plasma Asher Unit


Existing problem

 By oil deterioration the drainage capacity of Rotary pump is down Cause: probably due to contamination with water or with something else

Cold trap

- Every second day, oil must be replaced
- Every 2 to 3 months O/H of the Rotary pump is necessary

System flow: 20L

Confirmed Facts

- 100cc/week water were trapped.
- No problem after one month continuous operation.
- Currently using the unit with 1/month oil change.

Summary

- The deterioration of RP oil due to water contamination is under control
- Extended life time of RP exhaust function
- Reducing the frequency of oil replacement
- Extension of the life span of the RP

Features

- Offers wide variety of cooling application in Vacuum. The unit features low temp. cooling from -20°C to -100°C.
- Customized design or fitting to existing process line feasible.
- Multiple units installation greatly enhances the cooling capacity.
- Vacuum flange with thermo couple equipped. Built-in compressor also contributes to minimal unit size.
- Multiple responding program controls variety of optional application units.

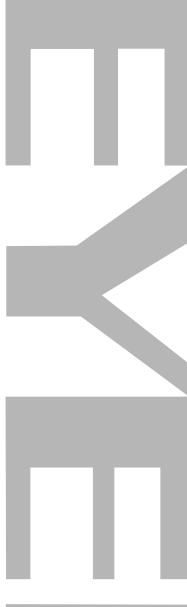
Application

- Enforced cooling capacity in vacuum
- Fit for use with low temperature test equipment
- Recovery of gas and solvents
- Water trap for analytical instruments
- Prevent oil reflux of rotary pump
- Prevent oil reflux into vacuum chamber
- Less exhaust time
- Less frequency of pump overhaul

Application Examples

- Asher unit (pump protecting, running time up)
- Sputtering unit (shorter rough pumping, better yield)
- Vacuum oven (running time up, pump protecting)
- Rough pumping system like a cryo-pump
- · Leak test system (more productivity, less workload)

Specifications


(250L/min)

Product name		Inline Cold Trap Unit
Input volta	ge	DC24V
Cooling ter	nperature	-20~-100℃
Cooling capacity		60W at -23.3°C (endothermic temp.)
		25W at -80°C (endothermic temp.)
Ambient temp.		25℃
Decreasing	g time (in vacuum)	4 minute to -60°C, 5minute to -80°C
Exhaust heating temp.		45℃
Connecting	g flange	VG80 (JIS)
Usage env	ironment	0~40°C, 0~90% & less (non condensing)
	input	ON/OFF signal
Etal		Output control signal 1 (0~5V input voltage)
External control		Output control signal 2 (4~20mA current input)
function	output	Exhaust heating abnormity
Tunction		Exhaust heating alarm
		Output control signal abnormity
	cover	resin
Material	flange	SUS304
	cooling part	Cu+Ni plating
Weight		6kg
Overall dimensions (mm)		160W*203L*360H

6

Low Temperature Circulator

Desktop Low Temperature Circulator CCA-1111	P.6
Low Temperature Circulator CA-1111 · 1112	P.6
Steamlined Low Temperature Circulator CA-1113	P.6
Built-in, compact type Low Temperature Circulator CA-1310	P.6
Medium-power Low Temp. Circulator CA-2600 · 2600S	P.6
High-power Low Temp. Circulator CA-3000 · 4000 series	P.6
Low Temp. Circulator Bath PFR-1000/PFP-1000	P.6

